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Abstract. We observed that before initiating software development the objectives are minimally organized and developers intro-
duce comparatively higher organization throughout the design process. To be able to formally capture this observation, a new
communication channel representation system for software is developed in three stages a) set-theoretical representation of soft-
ware design, b) mapping of software design to a communication channel formalism, and c) hierarchical decomposition leading
to higher organization. This new representation system provides a better understanding of the software design by introducing a
stepwise entropy reduction notion to the design process. Formal representation of hierarchical decomposition of software and
entropy-reduction view of software design provides a stronger bridge between established engineering methods and software
design, opens up new possibilities in software research, connecting software with information and coding theory.
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1. Introduction

Engineering is the study and practice of developing
solutions to technical problems that are timely, cost-
effective, and reliable [2,25,36]. Engineers solve tech-
nical problems by applying mathematical and scientific
knowledge to develop artifacts [9,18]. Software engi-
neering in particular is an engineering discipline whose
focus is the production of high quality software sys-
tems [35]. It is a challenging task to produce a high
quality artifact within the cost and time parameters,
especially for complex projects. Systematic software
design methodologies reduce the cost of software de-
velopment and improve the quality of software prod-
ucts [9,14].

A deeper analysis of all these developments reveals
that software engineers evidently focus on abstrac-
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tions such as data, function, and control abstractions
in order to master the complexity in software systems.
These abstractions, which facilitate systematic decom-
position, have been provided in the form of program-
ming language constructs and design tools [14,37,41,
42]. Significant effort has been expended over sev-
eral decades to find new design techniques, program-
ming languages, and other strategies for the produc-
tion of software. In the early days, programs were im-
plemented as a single block of instructions. Over time,
as problems became more complex and computers be-
came more powerful, the size of the programs has cor-
respondingly increased. Conceptually controlling the
large blocks of instructions proved to be difficult for
developers. Naturally, to tackle the complexities, lan-
guage designers started applying hierarchical decom-
positions techniques [6,16,32]. Large programs were
organized into subprograms. Therefore, as a decompo-
sition strategy, numerous approaches were introduced.
These approaches, which can generally be grouped
under the category of module-based programming,
amounted to the development of constructs, such as
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function, subroutine, and modules [20,35]. Further de-
velopments in hardware technologies and changing re-
quirements led to the need for implementing even more
sophisticated programs. Therefore, the shortcomings
of module-based abstractions and decomposition even-
tually became pronounced [6,14,32]. As such, the need
for even more advanced decomposition techniques re-
sulted in the development of yet newer programming
languages, newer development paradigms, and pro-
gramming constructs. Recognition of design strategies
led to the development of Object-Oriented [6] and
Aspect-Oriented techniques [19].

The historical objective in developing these ap-
proaches and their associated methodologies and tools
has been that the software engineer should maintain
conceptual control over the developed design by hi-
erarchical series of abstractions. Although these ap-
proaches has been successful in their own right in pro-
viding strong support for engineers, the size and com-
plexity of software systems have greatly increased and
software engineers’ ability to maintain conceptual con-
trol has not improved correspondingly. These method-
ologies are fundamentally linguistic in nature [14,35]
and they present difficulty developing an engineering
foundation [35].

It is clear that we need to formalize software devel-
opment to improve our ability to maintain intellectual
control and thus to cope with increasing complexity in
software systems [30,33,34]. In this paper we present
a communication-theory based foundation of software
design by combining concepts from the theory of de-
composition of complex systems [4,30,33], and com-
munication channel abstraction [10,11].

We observed that before initiating software design
process the objectives are minimally organized and
designers introduce comparatively higher organization
throughout the design process. Every design decision
resolves some kind of an unclear situation in design
objectives and reduces the number of possible alterna-
tives.

Historically, this process of transforming disorgani-
zation to organization is considered to be a concern
of complexity analysis [26,30,34]. Therefore, from a
complex-system perspective, the software design prob-
lem is a form of complexity analysis and system de-
composition.

We started with mapping of software systems to set-
theoretical representations. Software systems are rep-
resented with an arbitrary number of variables. Next
we showed the information transfer between variables
and demonstrated the correlations among variables as

communication channels. Consequently, we developed
a communication-channel representation of software
systems.

Our research program is to develop a practical
yet formal approach to be able to deductively rea-
son (using computer not necessarily mathematicians)
about software design. To our knowledge this paper
is the first attempt of this kind. From the technical
and formal engineering perspective, a computer col-
lectively (hardware, firmware, and software) and es-
sentially can be modeled as a communication channel.
The Processor-Memory-Switch model (PMS) com-
bined with Instruction-Set-Processor (ISP) makes up
the computer [5]. In our research we pursue to develop
a common formalism with which we will be able to
model PMS as well as ISP. In this paper we explore
only to develop a communication channel representa-
tion of software (ISP). This means, we can deductively
reason about designing a computer (hardware and soft-
ware) in the future if we succeed in our attempts.

The next section, Section 2, covers information con-
cepts such as entropy, transmission, correlation for-
mulas, which are useful in the study of software sys-
tems in the succeeding sections. Section 3 presents
a mathematical concept of organization and of sys-
tems used to model software design. Section 4 intro-
duces general design principles from the perspective
of design decomposition and related concepts. Sec-
tion 5 introduces set-theoretical representation of soft-
ware, communication-channel formalism of software,
and hierarchical decomposition of software. The sum-
mary, Section 6, concludes the paper.

2. Information-theoretical foundations

The beginnings of the development of information
theory can be traced to the initial considerations for
the development of the concept of entropy. Theoret-
ical contributions involving entropy functions started
in the original investigation of heat phenomena [12].
In the mid 1800s, Carnot explained the limitations
in the heat-work transformation using a flowing sub-
stance model. He observed that some energy is lost
even in the most efficient engine possible [15]. Eventu-
ally, Clausius formulated the dissipation of useful en-
ergy in terms of a new quantity which he denoted En-
tropy [12].

Following Carnot’s observation, Maxwell, Boltz-
mann, and Gibbs defined heat as disordered motion of
atoms and molecules with consideration of the atomic
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nature of matter [12]. Their foundational investigations
eventually initiated a new branch of mechanics, called
Statistical Mechanics [12]. Ludwig Boltzmann studied
Entropy as being a measure of degree of orderliness or
disorderliness of gas molecules [12].

In the field of communication, Nyquist and Hartley
introduced a quantification technique to measure the
information in a message. It took about two decades af-
ter Hartley’s paper for the introduction of a general the-
ory called Communication Theory, by Shannon [29].
He demonstrated fundamental theorems for noiseless
and noisy channels and established the transmission
rate limit for a given channel and a source. Shan-
non’s information measure includes two variables, the
sender’s and the receiver’s state. McGill presented an
extension of Shannon’s measures to multivariables. He
also developed the associated quantitative formulations
of transmission, interaction, and correlation concepts
for multivariate analysis [23].

2.1. Techniques used: The quantitative study of
information

Information theory literature defines the communi-
cation channel as a mathematical object which con-
nects input variables to output variables in a probabilis-
tic manner [29]. A communication channel is repre-
sented by an input set X = {X1, . . . , Xn}, an output
set Y = {Y1, . . . , Ym}, and a set of conditional proba-
bilities P (Xk | Yl) for all k, l.

The uncertainty concerning the input set X , denoted
by H(X), is called source entropy. It is the uncer-
tainty concerning which symbol will be transmitted.
The output set Y consists of all the possible symbols
that will be received. The amount of uncertainty in the
receiver part, denoted by H(Y ), is called receiver en-
tropy. Therefore, H(Y ) may include uncertainty which
the sender should not account for. The conditional en-
tropy H(Y | X) is the measure of this uncertainty
and it is equivalent to noise. In other words, part of the
source entropy may not be received by the receiver be-
cause of noise. The quantity H(X | Y ) is the aver-
age amount lost, and it is called equivocation [29]. The
amount of information transmitted, T (X : Y ), is the
uncertainty shared by both input and output sets.

Shannon’s Entropy Formula is a measure of the en-
tropy of a variable X that is by definition the sum1

1Unless otherwise specified, we shall use logarithms of base 2.
The unit of H is in bits.

H(X) = −p1 log p1 − · · · − pN log pN

=

N∑
i=1

ϕ(pi) (1)

where pi = P (Xi) and ϕ(p) = −p log p.
The observed transmission between two variables,

X, and Y , is defined as follows:

T (X : Y ) = H(X) +H(Y )−H(X · Y ). (2)

A transmission function can be generalized to an
arbitrary number of variables. Correlation [23,26]
among variables U1, U2, . . . , Un is the total informa-
tion transmission and by definition as follows:

C(U1, U2, . . . , Un) =

n∑
i=1

H(Ui)−H

(U1 · U2 · . . . · Un). (3)

The quantitative study of information given in this
section is used to model information transfer among
the software elements in Section 5. The total informa-
tion transfer is utilized for the formal investigation of
software design as a decomposition of software sys-
tems into subsystems.

3. Necessity of systems approach

The basic idea that underlies statistical mechanics
is that an organized system has a lower entropy than
a disorganized one [26,38]. The difference between
these two systems can be defined as a reduction in
the entropy, and the difference can be calculated by
the methods of statistical mechanics. In statistical me-
chanics, an organized system is composed of ordered
molecules [12]. The states of particles and correlation
among these particles were demonstrated with Entropy
term. Watanabe demonstrated the information calcu-
lation as the measure of organization [38]. Rothstein
used the redundancy calculation to demonstrate the or-
ganization [26]. In communication theory, correlation
is defined with the Redundancy term [29].

Ashby made major contributions to the information
theoretical analysis of complex systems [4]. He defined
a complex system as a set of variables with constraints.
He mentioned that the presence of organization arises
from communication between variables. In his seminal
paper, he examined the constraints as multivariate re-
lationships within a system and denoted them as Inter-
nal Informational Exchange. He showed that when the
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variables are related, constraints exist and they can be
quantified with information theory.

Conant [8] applied information theory to system de-
composition. He studied pairwise interaction of vari-
ables in a dynamic system and provided a technique
to decompose a system into weakly connected subsys-
tems. His technique detects subsystems of a complex
system while quantifying the interactions among the
variables.

3.1. Techniques used: The system perspective

Simon, in his development of a science of design, in-
vestigated the nature of systems in general [30]. He de-
fined complex system informally as the composition of
a large number of components interacting in a complex
way. Typically, in systems, the whole exhibits emer-
gent behavior and becomes more than a linear sum of
the parts.

Watanabe and others introduced a formal treatment
technique for the analysis of complex systems follow-
ing Simon’s definition [8,26,38]. Their preferred start-
ing point was the mathematical notion of the struc-
ture of organization, which was conceptually identi-
cal to the systems view of Simon. In this perspective,
a complex system is composed of correlated subsys-
tems or elements [4,38]. The formal analysis of a com-
plex system is therefore, related to the degree of cor-
relation among its subsystems or elements [4,38]. Nat-
urally, correlation can indicate the level of depth and
breadth of interactions among subsystems or elements.
Therefore, this correlation can be used to show the de-
gree of interaction of subsystems. An organized struc-
ture includes redundancy and the amount of redun-
dancy reduces the information required to reveal that
structure [26,38]. Therefore, structure provides infor-
mation. If we recall Shannon’s results, we observe that
in communication theory, the structure of a system im-
plies the structure of a message and redundancy within
the message, which corresponds to the amount of un-
certainty [4,26,38].

The degree of organization increases if the degree of
uncertainty of the system decreases despite a large de-
gree of uncertainty on individual components. Thus the
strength of organization is measured by the balance be-
tween the uncertainty of the components with respect
to the uncertainty of the whole. Since entropy is a mea-
sure of uncertainty, then the degree of organization can
be defined as

Organization = (sum of entropies of parts)

−(entropy of whole). (4)

In a sense, decomposition of a complex system is
a matter of identification of its components and their
interactions. A many component system interacting in
a complex way is naturally not conducive to the ob-
servation of its component interactions. The difficulty
rests in the identification of all the system components,
a requirement for decomposing the system into loosely
coupled subsystems or elements [30].

One can define the system as a set of variables and
observe the correlation between them [26,38]. It is as-
sumed that the information flow within the system is
representative of the relations between the variables [4,
38]. As mentioned above, the answer lies in the hier-
archical decomposition of the total correlation [4,38].
There are multiple ways of producing such a decom-
position scheme. It is a matter of the “parameter of in-
terest” [35] to decide, which depends on the purpose
of the analysis. To reduce complexity, strongly con-
nected elements are grouped into subsystems [8,30].
This highlights that correlations among subsystems are
weaker than correlation within subsystems.

4. General design principles and software design

In traditional engineering disciplines, design is con-
sidered to be a fundamental activity [1,17,25,27]. The
act of design starts with recognition of a design prob-
lem [9,25,33]. A designer determines the problem ac-
cording to his or her parameter(s) of interest. A param-
eter of interest corresponds to a designer’s judgment
and includes the criteria that will drive the design. Af-
ter analyzing a problem, the designer conceives of a
solution or family of solutions that will correct or im-
prove the current situation.

Following Smith and Browne [31], design problems
consist of five elements: goals, constraints, alterna-
tives, representations, and solutions. While goals com-
prise the specification of needs, solutions provide sat-
isfaction of those goals. Designers normally generate
various alternative approaches in order to solve the
given problem. During evaluation, designers narrow
the space of alternative designs [7,25]. The designer is
required to make decisions based on many parameters
and to choose among possible alternatives, while eval-
uating the feasibility of each choice.

Every effective design decision resolves some part
of an unclear situation and reduces the number of pos-
sible alternatives. In the face of uncertainty, a designer
is obliged to evolve a design so that if an artifact were
to be produced according to that design, it would meet
the requirements and satisfy the stated constraints.
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Fig. 1. Structural entity space.

4.1. Techniques used: Design spaces

Designers have to consider multiple alternatives dur-
ing design and reach a decision based on experience
and the methodology that they employ. In applications,
requirements are usually imprecise and uncertain [13,
40]. Designers may eliminate some design alternatives
in early stages with fuzzy methods [39], that may re-
sult in loss of information [21]. Therefore, designers
need a consistent technique to represent, compare, and
select among design alternatives. Design Space notion
is defined as a function that maps “fundamental con-
cepts” to design properties. Design properties include
quality factors and implementation details that cover
functional and non-functional requirements [3].

During the design process, designers work on two
different spaces: Problem Space and Solution Space.
Problem Space includes only the details from busi-
ness/customer domain. On the other hand, Solution
Space includes technical terms and incorporates so-
lution details, while each space has its own repre-
sentation [9,31]. One responsibility of a software de-
signer is to transform problem space concepts into
solution space concepts. Problem space concepts are
terms, definitions, and rules from business/customer
domain which are independent of technical details. On
the other hand, solution space concepts are technical
terms that incorporate solution details.

All possible design alternatives for these specifica-
tions form a design space for the software. To identify
software abstractions, and corresponding decomposi-
tion activities, two different design spaces are defined.
These are

– Structural Entity Space and
– Structural Relation Space.

Fig. 2. Structural relation space.

Design space decomposition starts with the specifica-
tion of design spaces which define entities, attributes,
and relationships between the concepts. While entities
within solution space are specified in an entity epace,
relationships are given in a relation space.

4.1.1. Structural entity space
Mappings between structural problem domain con-

cepts (CDomain) into structural solution concepts are
shown in this space. Figure 1 demonstrates the space as
a two dimensional space. Following Aksit and Tekin-
erdogan [3], definitions of Structural Entity Space and
corresponding solution space concepts are given as fol-
lows:

– The predefined property PEntity (represented as
the y-axis in Fig. 1) is a set of solution space
alternatives for problem space concepts. PEntity

= {Class,Operation,Attribute}, and
– SStructuralEntity defines the design space that

maps the concepts of CDomain to the elements of
PEntity and as such represents the total set of al-
ternatives of domain models.

4.1.2. Structural relation space
This space shows the relations between problem do-
main concepts in relational terms. Figure 2 demon-
strates the two-dimensional space. Definitions of Struc-
tural Relation Space and corresponding solution space
concepts are given as follows:

– The predefined property PRelation (represented as
the y-axis in Fig. 2) is a set of alternatives for
the relationships between concepts. PRelation =
{Association,AttributeOf,Generalization, Meth-
odOf,NoRelation}, and
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– SStructuralRelation defines a design space that
maps the 2-tuple concepts of CDomain to the ele-
ments of PRelation and as such represents the total
set of relationship alternatives of domain models.

4.1.3. Design space example
Figure 3 presents the application of the design-space

decomposition to a library example [3]. The example
is the design of a set of collection classes, such as
LinkedList, OrderedCollection, and Array to be a part
of an object-oriented library. These classes should pro-
vide the needed operations to read and write the el-
ements stored in collection objects. Furthermore, the
sorting operation is needed to sort items within collec-
tion objects.

For the identification of the software abstractions,
and the corresponding decomposition activities for the
library example, two design spaces, Entity Space, Re-
lation Space, are demonstrated as follow.

The structural model of the library example is com-
posed of the concepts of the domain (CDomain) and
the relationships in the domain (RDomain). They are
listed below:

– CLibrary = {Library,Collection,LinkedList,
Array,OrderedCollection,
collectionItems,sort,read,write},

– RLibrary ={(Library,Collection),
(Library,LinkedList),
(Library,OrderedCollection),
(Library,Array), (Collection,LinkedList),
(Collection,OrderedCollection),
(Collection,Array), (sort,Collection),
(sort,LinkedList),
(sort,OrderedCollection), (sort,Array)}.

The two types of structural decompositions, entity
design space and relation design space, are shown in
Fig. 3. Designer decisions in entity and relation design
spaces (represented in two dimensions) are marked in
Fig. 3.

4.2. Design activity as an uncertainty-reduction
process

Software developers generate various alternative ap-
proaches to decompose the given problem. Usually
several decomposition alternatives exist and the de-
signer must make decisions based on many parame-
ters and to make choices among possible decompo-
sition alternatives, while evaluating the feasibility of
each choice. This situation reflects the uncertainty that
designers encounter in finding a specific decomposi-
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Fig. 3. An overall diagram of successive design decisions leading to
the final product.

tion. Uncertainty exists in every step of software de-
sign, such as the clarification of requirements, mapping
problem space concepts into solution space concepts,
and transformation of solution space concepts into ex-
ecutable concepts.

Every design decision resolves some part of an un-
clear situation and reduces the number of possible al-
ternatives. Thus, each design activity is an uncertainty-
reduction process.

In the beginning there is minimal organization there-
fore high uncertainty exists (high entropy). The deci-
sions carrying out design activities reduce uncertainty
and introduce comparatively higher organization (low
entropy). In Fig. 4, the design process is represented
from the perspective of the developer to capture the un-
certainty reduction process. All possibilities within the
two spaces, in Fig. 4, demonstrate the uncertainty. On
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Fig. 4. Software design activities transforms uncertainty to certainty.

the other hand, the artifact displays organization (low
entropy). The initial state of the library design spaces
represent all possible alternatives with minimal organi-
zation (implying high entropy). The successive design
decisions, as marked within design spaces of the li-
brary example, introduce comparatively higher organi-
zation (implying low entropy). Representing software
design as an uncertainty reduction process is one of the
novel contributions of this work.

5. Information theoretical representation of
software design

In our modeling approach, multivariate correlations
among variables are modeled using communication
channel formalism [10,23]. Total correlation over the
complex system is the sum of the total correlation
within the subsystems plus the correlations among the
subsystems. Furthermore, each subsystem can be bro-
ken down into further subsystems and the fundamental
rule holds in turn for the subsubsystems and their cor-
relations [8,10]. One of the basic criterion for evalua-
tion of the decomposition is that the correlation among
the subsystems be insignificant compared to the total
correlation.

Figure 5 presents three transition steps for the analy-
sis of software systems using communication-channel

representation. We start with mapping of software sys-
tems to set-theoretical representations. Software sys-
tems are represented with an arbitrary number of vari-
ables. Each variable is observed once per subjective
time increment. The representative values are shown as
a table in Fig. 5. In the second transition, which is the
mapping of set-theoretical representation to a channel
formalism, we show the information transfer between
variables and demonstrate the correlations among vari-
ables as communication channels. The third step, hier-
archical decomposition, takes the channels as input and
applies decomposition techniques to find subsystems.

5.1. Set-theoretical representation of software design

We start with mapping of software systems to set-
theoretical representations. Software systems are rep-
resented with an arbitrary (but finite) number of vari-
ables. We define a set of K variables for a given soft-
ware system. The variables represent elements, such as
identifiers defined within programs, data values from
data segment, function return values, and code seg-
ment addresses. Each variable is denoted by Xj where
1 6 j 6 K. Software system is a set of Xj , denoted
by the set S = {X1, . . . , XK}. X ′js values are taken
from the set Pj = {X1

j , X
2
j , . . . , X

nj

j }. Pj is a finite
set, and its elements depends on the software elements
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V1 V2 V3 V4 V5 V6 V7 V8

2 7 4 67 20 10 1212 93

40 123 1234 45 12 5 4 34

6 56 3455 5 34 400 4 3

1 34 23 3455 6787 2 4 456

80 1 23 543 88 123 4 6

15 123 23 2 8 2 4 567

200 999 12 2 1 1222 4 2

Program 

begin

A;

if P1 then

B:

else

C;

endif

D;

while P2 do

E;

F;

endWhile

G;

end

Software System={V1, V2, V3, V4, V5, V6, V7, V8}

b

c

a

V1 V2 V3 V4 V5 V6 V7 V8

2 7 4 67 20 10 1212 93

40 123 1234 45 12 5 4 34

6 56 3455 5 34 400 4 3

1 34 23 3455 6787 2 4 456

80 1 23 543 88 123 4 6

15 123 23 2 8 2 4 567

200 999 12 2 1 1222 4 2

Software System={V1, V2, V3, V4, V5, V6, V7, V8}

V3 V4

4

12

2

5

23

1234

45

67

543

3455

1

3455

11

1/3

1/3

1/3

1

V3 V4

4

12

2

5

23

1234

45

67

543

3455

1

3455

11

1/3

1/3

1/3

1

Fig. 5. Analysis of software systems: a) mapping of software systems to set-theoretical representations, b) mapping of set-theoretical representa-
tion to channel formalism, c) hierarchical decomposition
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Table 1
Example software system

which Xj represents. The set Pj forms a partition as-
sociated with variable Xj .

For example, when an integer type identifier de-
fined within a given program is associated with X1, P1

takes a set of valid values associated with this integer
type. Considering another level of abstraction, we can
see that for an integer type with n bits, unsigned type
represents the non-negative values 0 through 2n − 1,
so that P1 = {0, . . . , 2n − 1}, on the other hand,
signed integer type represents numbers from −2(n−1)
through 2(n−1) − 1, therefore the set P becomes P1 =
{−2(n−1), . . . , 0, . . . , 2(n−1) − 1}.

The next step is the observation of values associated
with variables of the system. Therefore, values associ-
ated with each variable are obtained and observed once
per cycle. The cycle represents the stable states within
a software system. The cycle should allow the vari-
ables a chance of changing values so the stable states
of software system can be observed. In terms of the
communication channel, this maps input variables of
a channel to output variables. We observe the K vari-
ables for N cycles, and obtain a total of K · N differ-
ent values. Therefore, observed values for each vari-
able is denoted by Oj = {O1

j , . . . , O
N
j }. Observed

number of occurrences of the event in consideration
Xj = Xi

j is denoted by nXi
j
, such that

∑nj

i=1 nXi
j
=

N . Number of occurrences associated with partition
Pj is be denoted by Fj = [nX1

j
, . . . , n

X
nj
j
]. The vari-

ables Xj is grouped into sets to demonstrate decom-
position steps during software design. The set Si =
{S1

i , . . . , S
ni
i } represents a subsystem of given soft-

ware system, where ∪ri=1Si = S and Si ∩ Sj = ∅ for
all i 6= j.

5.2. Mapping of software design to communication
channel formalism

As presented in the above section, set-theoretical
representation of a software system and the corre-
sponding observed values reveal that there are varieties
in observed values. The set theoretical decomposition
of the software system leads us to expose the relation-
ships between variables and capture the relationships
in the formalism of communication channel.

To represent the interaction between two system
variables for example, Xi and Xj :

– the value set, Pi, which is associated with Xi, is
taken as a channel input set S,

– the value set, Pj , which is associated with Xj , is
taken as a channel output set R, and

– then channel probability is, P (Sk, Rl) =
nSkRl

nRl
,

where observed number of occurrences of the
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event in consideration{Rl = P l
j} is denoted

by nRl
, the number of occurrences of the event

{SkRl = P k
i P

l
j} is denoted by nSkRl

.

5.3. Hierarchical decomposition leading to higher
organization

Hierarchical decomposition, through a process par-
titioning interactions in a channel, produces subsets of
channel elements. In Fig. 5, this process is represented
as a transformation between channels and set-subsets
producing hierarchical combinations of software ele-
ments.

Following the notation introduced above, software
design decomposes the given software system S =
{X1, . . . , XK} into r elements, such that the vari-
ables Xj is grouped into sets, Si = {S1

i , . . . , S
ni
i }

which represents an element of a given software sys-
tem, where ∪ri=1Si = S and Si ∩ Sj = ∅ for all i 6= j.

The total interaction is decomposed into transmis-
sion such that

CTotal(X1X2 . . . XK) =

r∑
i=1

CTotal(Si)

+C(S1, S2, . . . , Sr) (5)

where CTotal(Si) is the transmission within an el-
ement, Si, and C(S1, S2, . . . , Sr), correlation for-
mula. As a result, software system is decomposed
into r elements with the total amount of transmission
C(S1S2 . . . Sr).

5.4. Application to object-oriented software design

In this section, we introduce our channel representa-
tion of software design using three stages elaborated in
Sections 5.1, 5.2, and 5.3. This example, through the
use of hierarchical organization, demonstrates the uti-
lization of communication channel in software design.

Table 1 shows the specification of the representative
example, with which we demonstrate information the-
oretical analysis of software design. As stated in Sec-
tion 5.1, we start with mapping of the software sys-
tem to a set-theoretical representation. We define a set
of four variables, {V 1, V 2, V 3, V 4}, for the software
system. In this case, variables represent Attributes de-
fined within Class A and Class B. Mapping between
Class Attributes and set variables is given in Table 2.
The example software system is represented as a set,
S = {V 1, V 2, V 3, V 4}. Class definitions demonstrate
the hierarchy between Classes and Attributes. Class A

Table 2
Software concepts to set concepts

Software Set
Example system S = {V 1, V 2, V 3, V 4}

A.x V 1
A.d V 2
B.s V 3
B.z V 4

Table 3
Part of the observed values

Cycle # V1 V2 V3 V4
1 6 0 7 1
2 6 6 42 7
3 11 0 53 42
4 16 0 69 53
5 16 17 1104 69
6 21 3 1125 1106
7 21 23 1146 1125
8 21 27 24066 1150
9 21 28 505386 24071

6

11

0

3

16

21

6

17

23

27

28

Fig. 6. Actual communication between V1 and V2.

is mapped into a set {V 1, V 2} and Class B is mapped
into a set {V 3, V 4}.

The next step is the observation of values associated
with variables of the system. For this system, values as-
sociated with each variable are observed with the exe-
cution of the calculate method shown in Table 1. Each
calculate execution changes values of variables so that
each transformation of the system is observed. Repre-
sentative observations of four variables for nine cycles
are given in Table 3.

As stated in Section 5.2, the interaction between
variables in the example software system is repre-
sented using the communication channel formalism. In
terms of mapping to the channel representation, the re-
lationship between V 1 and V 2 based on observed val-
ues within nine cycles is shown in Fig. 6.
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Fig. 7. Decomposition of interaction among variables.

Table 4
Transmission between variables

Variables Transmission
V 1⇔ V 2 2.81
V 1⇔ V 3 4.28
V 1⇔ V 4 3.91
V 2⇔ V 3 3.86
V 2⇔ V 4 3.68
V 3⇔ V 4 7.56

As shown in Table 3, while V 1 = 6 in the first and
second cycles, V 2 = 0 for the first cycle and V 2 = 6
for the second cycle. This relationship is shown in the
communication channel of Fig. 6 as two communica-
tion links starting from the first node of V 1 and ending
in the first and third nodes of V 2.

Transmission between variables is calculated using
Formula 2. As an example, calculation of transmission
between V 1 and V 2 with the observed values in Ta-
ble 3 is shown below.

OV 1 = {6, 6, 11, 16, 16, 21, 21, 21, 21}

FV 1 = {2, 1, 2, 4}

H(V 1) = −2

9
log

2

9
− 1

9
log

1

9
− 2

9
log

2

9
−

4

9
log

4

9
= 1.83

OV 2 = {0, 6, 0, 0, 17, 3, 23, 27, 28}

FV 2 = {3, 1, 1, 1, 1, 1, 1}

H(V 2) = −3

9
log

3

9
− 1

9
log

1

9
− 1

9
log

1

9
− 1

9

log
1

9
− 1

9
log

1

9
− 1

9
log

1

9
− 1

9
log

1

9
= 2.64

OV 1·V 2 = {6 · 0, 6 · 6, 11 · 0, 16 · 0, 16 · 17, 21 · 3,

21 · 23, 21 · 27, 21 · 28}

FV 1 = {1, 1, 1, 1, 1, 1, 1, 1, 1}

Table 5
Decomposition of interaction among variables and subsystems

Decomposition Transmission Transmission
among elements within elements

{V 1, V 2, V 3, V 4} 16.71 16.71
{{V 1}, {V 2}, {V 3, V 4}} 9.15 0+0+7.56
{{V 2}, {V 1, V 3, V 4}} 4.27 0+12.44
{{V 1, V 2}, {V 3, V 4}} 6.34 2.81+7.56

H(V 1 · V 2) = −1

9
log

1

9
− 1

9
log

1

9
− 1

9
log

1

9

−1

9
log

1

9
− 1

9
log

1

9
− 1

9
log

1

9

−1

9
log

1

9
− 1

9
log

1

9
− 1

9
log

1

9
= 3.16

T (V1 : V2) = 1.83 + 2.64− 3.16 = 1.31

A complete description of this software system is
given elsewhere [10]. Pairwise relationships and corre-
sponding transmission values for the example system
with the complete description are shown in Table 4.

Diagrammatic representation of six pairwise rela-
tions are shown in Fig. 7. In Fig. 7, pairwise rela-
tions are indicated by arrows whose thickness is di-
rectly proportional to transmission values. For exam-
ple, transmission value between V 3 and V 4 is 7.56 in
Table 4, and it is shown as the strongest pairwise rela-
tionships in Fig. 7 with the thickest arrow.

As stated in Section 5.3, partitioning of these in-
teractions creates the hierarchy within software sys-
tems. Groups of highly interacted elements constitute
the subsystems of the system, as such producing the
desired hierarchy. Following these principles, hierar-
chical decomposition of the example system is shown
diagrammatically in Fig. 7. V 1 and V 2 are grouped
into one subsystem and V 3 and V 4 are grouped into
another subsystem.

Communication between variables within the ex-
ample software system can be decomposed in many
different ways. Table 5 shows various decomposition
possibilities for the example system. For example,
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the decomposition S = {{V 2}, {V 1, V 3, V 4}} par-
titions the example system into two subsystems. First
subsystem, {V 2}, consists of one software element
with no internal communication. Second subsystem
{V 1, V 2, V 3} is composed of three elements with a
total of 12.44 transmission value among the variables,
V 1, V 3, and V 4. Transmission value between the sub-
system {V 2} and the subsystem {V 1, V 3, V 4} is 4.27.

These values represent various decomposition possi-
bilities with a requirement for decomposing the system
into loosely coupled subsystems or elements.

6. Summary

Our key goal was to model software design and un-
derstanding of the design process in software engi-
neering based on first principle foundations of science
and the practices of “hard” engineering disciplines. We
achieved this goal with formal demonstration that:

– Software design is a hierarchical decomposition
and addresses all steps from requirements to the
final product, and

– Software design imposes an organization and
reduces entropy through successive transforma-
tions.

We used the mathematical model of communication
system to model communication or information ex-
change among software elements. For multivariate in-
teractions, we applied multivariate information trans-
mission. We utilized Ashby’s technique to map a soft-
ware system into a complex system and then we used
the organization measurement technique defined by
Rothstein and Watanabe. Finally, we used hierarchical
system definition from Simon and Conant to demon-
strate that software design is a hierarchical decomposi-
tion of complex system.

The communication-channel representation of soft-
ware systems opens up further useful possibilities for
applying engineering analysis to software develop-
ment. This indicates that current understanding and in-
formal representations of software design, using our
results, can further evolve into a type of inquiry in-
volving classical engineering mathematics and con-
cepts. It should be noted that we are initiating a com-
pletely new formal modeling approach for software de-
sign. With this approach eventually, deductive reason-
ing about large software would be possible as early as
design phase. The mathematical machinery used for
this purpose is Communication Channel Formalism of
Shannon, which has not been used before in deduc-

tive reasoning about software. All other types of math-
ematical machinery for software modeling have been
reviewed by one of the authors elsewhere [35].

We observe that, among the software metrics, our
approach has some affinity with run time quality met-
rics such as run-time object-oriented cohesion met-
rics [22,24]. Run-time metric related aspects of our ap-
proach have been detailed in [28]. Although our inten-
tion here is not to develop a new metric, our work can
be exploited in the direction of developing simple in-
formation theory based cohesion metrics.
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